On the Triangle Removal Lemma for Subgraphs of Sparse Pseudorandom Graphs

نویسندگان

  • YOSHIHARU KOHAYAKAWA
  • JOZEF SKOKAN
  • J. SKOKAN
چکیده

We study an extension of the triangle removal lemma of Ruzsa and Szemerédi [Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, NorthHolland, Amsterdam, 1978, pp. 939–945], which gave rise to a purely combinatorial proof of the fact that sets of integers of positive upper density contain three-term arithmetic progressions, a result first proved by Roth [On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109]. We obtain a generalization of the triangle removal lemma for subgraphs of sparse pseudorandom graphs and deduce the following version of Roth’s theorem, which applies to sparse sets of integers: If A ⊆ [n] = {1, . . . , n} has the property that all non-trivial Fourier coefficients λ of the indicator function 1A : [n] → {0, 1} satisfy |λ| = o(|A|3/n2), then any subset B ⊆ A that contains no three-term arithmetic progression satisfies |B| = o(|A|).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal results in sparse pseudorandom graphs

Szemerédi’s regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rödl proved an analogue of Szemerédi’s regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemerédi’s regularity lemma us...

متن کامل

Complete subgraphs of random graphs

A classical theorem by Erdős, Kleitman and Rothschild on the structure of triangle-free graphs states that with high probability such graphs are bipartite. Our first main result refines this theorem by investigating the structure of the ’few’ triangle-free graphs which are not bipartite. We prove that with high probability these graphs are bipartite up to a few vertices. Similar results hold if...

متن کامل

An approximate blow-up lemma for sparse pseudorandom graphs

We state a sparse approximate version of the blow-up lemma, showing that regular partitions in sufficiently pseudorandom graphs behave almost like complete partite graphs for embedding graphs with maximum degree ∆. We show that (p, γ)-jumbled graphs, with γ = o(pmax(2∆,∆+3/2)n), are “sufficiently pseudorandom”. The approach extends to random graphs Gn,p with p ( log n n )1/∆.

متن کامل

The Regularity Lemma of Szemerédi for Sparse Graphs

In this note we present a new version of the well-known lemma of Szemerédi [17] concerning regular partitions of graphs. Our result deals with subgraphs of pseudo-random graphs, and hence may be used to partition sparse graphs that do no contain dense subgraphs.

متن کامل

Szemerédi’s Regularity Lemma for Sparse Graphs

A remarkable lemma of Szemerédi asserts that, very roughly speaking, any dense graph can be decomposed into a bounded number of pseudorandom bipartite graphs. This far-reaching result has proved to play a central rôle in many areas of combinatorics, both ‘pure’ and ‘algorithmic.’ The quest for an equally powerful variant of this lemma for sparse graphs has not yet been successful, but some prog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010